

In Proceedings of ICML 2024

Online Cascade Learning for Efficient Inference over Streams

Lunyiu Nie, Zhimin Ding, Erdong Hu, Christopher Jermaine, Swarat Chaudhuri

Univerity of Texas at Austin, Rice University lynie@utexas.edu

Reduces LLM inference costs by up to 90% while maintaining high accuracy and reliability in stream processing, by intersecting imitation learning & online learning.

LLMs are widely used in commercial products for processing data streams.

Cost management and latency control are critical.

Motivation

Method

Formal Formulation

LLMs are advancing with varied **cost-performance** profiles.

Motivation

Metho

Formal Formulation

Complexity distribution of input queries.

(a) SQUAD

Motivation

Method

One can **save resources** by using low-capacity models for simpler tasks and reserving larger models for more complex ones.

Motivation

Metho

Formal Formulation

Model Cascade

 $Cost(m_1) < Cost(m_2) < Cost(m_3) < ... < Cost(LLM)$

Motivation

Formulation

7

Exisiting Works

Model Cascading

FrugalGPT

References:

- Model Cascading: Towards Jointly Improving Efficiency and Accuracy of NLP Systems, EMNLP 22

- FrugalGPT: How to Use Large Language Models While Reducing Cost and Improving Performance, TMLR 24

Motivation

Formulatio

Method

Exisiting Works - Limitations

1. How to make full use of the LLM outputs?

2. How to make accurate deferral decisions?

Motivation

Metho

Proposed Method: Online Cascade Learning

Intersecting **Imitation Learning** and **Online Learning**: Smaller models $\langle m_1, ..., m_N \rangle$ in the cascade learn from LLM expert's behaviors (red arrows) and calibrate the deferral functions $\langle f_1, ..., f_{N-1} \rangle$ in real-time (green arrows).

Motivation

Method

Formal Formulation

Online Cascade Learning

Assume we have a cascade consisting of a Logistic Regression, a BERT-base, and an LLM:

Method

Formal Formulation

Online Cascade Learning – Warm-up Stage

At startup, the policy keeps its "gates" open, allowing all initial inputs to flow through the cascade

Method

Online Cascade Learning – Warm-up Stage

All initial queries are processed by the most expensive model (an LLM) to collect annotations:

Method

Formal Formulation

Online Cascade Learning – Model Updates

The smaller models' parameters are updated on the collected annotations.

Online Cascade Learning – Confidence Calibration

Online Cascade Learning - Stabilized Stage

As the system stabilizes, simple queries can be effectively handled by the smallest model (LR)

Online Cascade Learning - Stabilized Stage

Harder queries are smartly deferred to the more complex model (BERT-base)

Online Cascade Learning - Stabilized Stage

The most difficult queries are deferred to the LLM to collect annotations for online learning

Online Cascade Learning – Model Updates

The smaller models' parameters are updated on the collected annotations.

Motivation

Method

Online Cascade Learning – Confidence Calibration

We consider a streaming processing task where input queries are a fixed infinite stream $X = \langle x_1, ..., x_t, ... \rangle$. Each query x_t is associated with a ground truth y_t from label set Y. Our goal is to predict the label for each x_t using an N-level model cascade cost-effectively.

Now we formulate this as an episodic MDP:

• States (S): Includes states $s_{t,i} = \langle x_t, i \rangle$ where x_t is the user query at time t and i indicates the current cascade level, and a terminal state exit.

Let's say, we have 3 models in a cascade for binary classification:

• States: *s*_{*t*,1}, *s*_{*t*,2}, *s*_{*t*,3}, exit

Formal Formulation

We consider a streaming processing task where input queries are a fixed infinite stream $X = \langle x_1, ..., x_t, ... \rangle$. Each query x_t is associated with a ground truth y_t from label set Y. Our goal is to predict the label for each x_t using an N-level model cascade cost-effectively.

Now we formulate this as an episodic MDP:

• Actions (*A*): Consists of label set *Y*, representing the potential predictions if the cascade choose to output at the current state, and a special action defer that activates the next level of the cascade.

Let's say, we have 3 models in a cascade for binary classification:

• Actions: *Y* = {0,1}, defer

Metho

Formal Formulation

We consider a streaming processing task where input queries are a fixed infinite stream $X = \langle x_1, ..., x_t, ... \rangle$. Each query x_t is associated with a ground truth y_t from label set Y. Our goal is to predict the label for each x_t using an N-level model cascade cost-effectively.

Now we formulate this as an episodic MDP:

- Transitions (T): A determinisitic transition function, consisting of transitions of the form:
 - $\mathcal{T}(s_{t,i}, a) = \text{exit for } a \in Y$
 - $\mathcal{T}(s_{t,i}, \text{defer}) = s_{t,i+1}$

Let's say, we have 3 models in a cascade for binary classification, and we are now at $s_{t,1}$:

- Transitions:
 - $\mathcal{T}(s_{t,1}, a) = \text{exit if } a \in \{0,1\}$
 - $\mathcal{T}(s_{t,1}, \text{defer}) = s_{t,2}$

Motivation

Method

Formal Formulation

We consider a streaming processing task where input queries are a fixed infinite stream $X = \langle x_1, ..., x_t, ... \rangle$. Each query x_t is associated with a ground truth y_t from label set Y. Our goal is to predict the label for each x_t using an N-level model cascade cost-effectively.

Now we formulate this as an episodic MDP:

• Cost Function (*C*): Balances predictive loss (*L*) for prediction actions and computational overheads of next model (c_{i+1}) for deferral actions. Factor μ adjusts the trade-off between computational **cost** and **accuracy**.

$$C(s_{t,i},a) = egin{cases} \mathcal{L}(a|y_t) & ext{if} \ a \in Y, \ \mu c_{i+1} & ext{if} \ a = ext{defer} \end{cases}$$

Let's say, we have 3 models in a cascade for binary classification, and we are now at $s_{t,1}$:

- Cost at $s_{t,1}$:
 - $C(s_{t,1}, a) = \mathcal{L}(a|y_t)$ if $a \in \{0,1\}$
 - $C(s_{t,1}, a) = \mu c_2$ if a = defer, where c_2 represents the inference costs of BERT-base

Formal Formulation

Method – Policies and Learning Objective

Policy Representation: We represent policies in a factorized way using a set of *classification models* $(m_1, ..., m_N)$ that constitute the different levels of the cascade, and *deferral functions* $(f_1, ..., f_{N-1})$ that decide deferral.

Probability of deferring: $\pi(s_{t,i}, defer) = f_i(m_i(x_t))$ Probability of output label y: $\pi(s_{t,i}, y) = (1 - f_i(m_i(x_t)))m_i(x_t)[y]$ for $y \in Y$

Objective function: Minimize the combined cost of computational costs and prediction loss.

$$J(\pi,T) = \sum_{t=1}^{T} \left[\sum_{i=1}^{N} p_{\pi}^{s_{t,i}} C_{\pi}(s_{t,i}) \right]$$

$$C_{\pi}(s_{t,i}) = \frac{\pi(s_{t,i}, \text{defer}) \cdot \mu c_{i+1}}{(1 - \pi(s_{t,i}, \text{defer})) \cdot \sum_{y \in Y} \pi(s_{t,i}, y) \cdot \mathcal{L}(y|y_t)}.$$

$$probability \text{ of reaching state } s_{t,i}$$

$$p_{\pi}^{s_{t,i}} = \prod_{j=1}^{i-1} \pi(s_{t,j}, \text{defer})$$

Experiments

• Models:

- Logistic Regression
- BERT-base, ~110 M (and BERT-large, ~340M for N=4)
- o GPT-3.5 Turbo / Llama 2-70b-chat
- Benchmarks:
 - **IMDB**: a binary sentiment classification benchmark with 50,000 movie reviews
 - **HateSpeech**: class-imbalanced (1:7.95) hate speech detection with 10,703 samples
 - **ISEAR**: multi-class emotion detection benchmark with 7,666 samples in 7 categories
 - **FEVER**: a fact-checking dataset with 6,512 claims requiring complex reasoning and information verification.
- Baselines: Single LLMs, Knowledge Distillation, Online Ensemble Learning

Experimental Results

	IMDB			HateSp	ISEAR			FEVER				
	N=1300	N=3800	N=5200	N=600	N=2700	N=4900	N=1200	N=1500	N=2700	N=700	N=2000	N=2800
GPT-3.5 Turbo		94.15		8	3.34 83.2	8		70.34			79.98	
Distilled LR	82.61	83.60	87.01	80.18 37.94	82.23 49.25	85.03 45.59	44.97	47.46	48.92	56.51	57.80	57.13
Distilled BERT-base	85.28	90.18	90.19	80.49 64.39	80.71 73.88	79.35 77.37	61.49	62.62	63.37	61.70	63.64	70.82
Online Ensemble Learning	<u>8</u> 6.73	<u>88.80</u>	<u>89.95</u>	82.61 76.75	77.48 76.89	81.55 80.30	<u>56.</u> 56	60.42	61.78	6 <u>1.</u> 69	69.78	7 <u>6.</u> 67
Online Cascade Learning	87.95	92.48	93.01	82.66 82.36	85.35 77.20	83.26 81.03	60.78	65.34	69.75	61.95	71.86	78.49
Llama 2 70B Chat		93.33		7	7.81 82.1	9		68.23			77.15	
Distilled LR	82.17	85.80	86.88	67.94 66.56	79.71 61.73	81.46 49.91	46.78	47.56	51.76	57.46	61.24	58.42
Distilled BERT-base	85.39	85.59	85.44	75.84 78.87	79.18 75.54	80.27 72.21	62.18	61.84	65.12	65.88	65.66	67.54
Online Ensemble Learning	<u>8</u> 7. <u>14</u>	<u>88.66</u>	<u>89.61</u>	75.99 60.36	<u>70.79</u> 79.16	<u>76.82 81.84</u>	5 <u>4.</u> 74	<u>57.35</u>	<u>60.19</u>	63.48	7 <u>1.2</u> 7	7 <u>6.46</u>
Online Cascade Learning	87.58	92.14	92.63	78.30 63.06	78.32 76.54	78.32 82.03	59.24	63.34	67.25	63.81	72.47	77.73

Table: Comparison of accuracy (and recall for HateSpeech dataset) among different methods under various cost budgets (i.e., the maximum allowable LLM calls, denoted as *N*)

1. Overall, Online Cascade Learning can achieve better cost-performance trade-off.

Experimental Results

	IMDB			HateSp	ISEAR			FEVER				
	N=1300	N=3800	N=5200	N=600	N=2700	N=4900	N=1200	N=1500	N=2700	<i>N</i> =700	N=2000	N=2800
GPT-3.5 Turbo		94.15		8	33.34 83.2	8		70.34			79.98	
Distilled LR	82.61	83.60	87.01	80.18 37.94	82.23 49.25	85.03 45.59	44.97	47.46	48.92	56.51	57.80	57.13
Distilled BERT-base	85.28	90.18	90.19	80.49 64.39	80.71 73.88	79.35 77.37	61.49	62.62	63.37	61.70	63.64	70.82
Online Ensemble Learning	86.73	88.80	89.95	82.61 76.75	77.48 76.89	81.55 80.30	56.56	60.42	61.78	61.69	69.78	76.67
Online Cascade Learning	87.95	92.48	93.01	82.66 82.36	85.35 77.20	83.26 81.03	60.78	65.34	69.75	61.95	71.86	78.49
Llama 2 70B Chat		93.33		7	7.81 82.1		68.23			77.15		
Distilled LR	82.17	85.80	86.88	67.94 66.56	79.71 61.73	81.46 49.91	46.78	47.56	51.76	57.46	61.24	58.42
Distilled BERT-base	85.39	85.59	85.44	75.84 78.87	79.18 75.54	80.27 72.21	62.18	61.84	65.12	65.88	65.66	67.54
Online Ensemble Learning	87.14	88.66	89.61	75.99 60.36	70.79 79.16	76.82 81.84	54.74	57.35	60.19	63.48	71.27	76.4 6
Online Cascade Learning	87.58	92.14	92.63	78.30 63.06	78.32 76.54	78.32 82.03	59.24	63.34	67.25	63.81	72.47	77.73

Table: Comparison of accuracy (and recall for HateSpeech dataset) among different methods under various cost budgets.

2. Model cascade can even outperform LLM by taking advantage of fine-tuned models.

Experimental Results

	IMDB			HateSp		ISEAR		FEVER				
	N=1300	N=3800	N=5200	N=600	N=2700	N=4900	N=1200	N=1500	N=2700	N=700	N=2000	N=2800
GPT-3.5 Turbo	94.15			83.34 83.28			70.34			79.98		
Distilled LR Distilled BERT-base	82.61 85.28	83.60 90.18	87.01 90.19	80.18 37.94	82.23 49.25	85.03 45.59 79.35 77.37	44.97 61 49	47.46	48.92 63.37	56.51 61.70	57.80 63.64	57.13
Online Ensemble Learning Online Cascade Learning	86.73 87.95	88.80 92.48	89.95 93.01	82.61 76.75 82.66 82.36	77.48 76.89 85.35 77.20	81.55 80.30 83.26 81.03	56.56 60.78	60.42 65.34	61.78 69.75	61.69 61.95	69.78 71.86	76.67 78.49
Llama 2 70B Chat	93.33 77.81 82.19					68.23			77.15			
Distilled LR Distilled BERT-base Online Ensemble Learning Online Cascade Learning	82.17 85.39 87.14 87.58	85.80 85.59 88.66 92.14	86.88 85.44 89.61 92.63	67.94 66.56 75.84 78.87 75.99 60.36 78.30 63.06	79.71 61.73 79.18 75.54 70.79 79.16 78.32 76.54	81.46 49.91 80.27 72.21 76.82 81.84 78.32 82.03	46.78 62.18 54.74 59.24	47.56 61.84 57.35 63.34	51.76 65.12 60.19 67.25	57.46 65.88 63.48 63.81	61.24 65.66 71.27 72.47	58.42 67.54 76.46 77.73

Table: Comparison of accuracy (and recall for HateSpeech dataset) among different methods under various cost budgets.

3. As cost buget increases, distilled models may be bounded by their capacity, whereas model cascade can always defer to LLMs for complex queries.

Figure 5: Inference results on IMDB when $\mathcal{N} = 3671$. Online cascade learning system performs similarly to GPT-3.5 Turbo while saving $\sim 70\%$ of the inference costs.

Figure 6: Inference results on HateSpeech when $\mathcal{N} = 507$. Online cascade learning system performs similarly to GPT-3.5 Turbo while saving ~90% of the inference costs.

Figure 7: Inference results on ISEAR when $\mathcal{N}=2517$. Online cascade learning system performs very close to GPT-3.5 Turbo while saving \sim 30% of the inference costs.

Figure 8: Inference results on FEVER when $\mathcal{N} = 2635$. Online cascade learning system performs similarly to GPT-3.5 Turbo while saving $\sim 20\%$ of the inference costs.

Robustness againt Input Distribution Shift

- a. Distribution Shift in Input Length.
- IMDB benchmark rearranged in length ascending order, simulating a distribution shift over the **input complexity**.
- b. Distribution Shift in Input Category.
- IMDB benchmark rearranged by filtering all reviews regarding "Comedy" movies, then feeding them as the last part of the input stream, simulating a distribution shift over the **input semantics**.

Our method can quickly adapt to unseen inputs, perform robustly against distribution shifts in the data streams.

Adaptability to Larger Cascade (N = 4)

Our method can flexibly accommodate and efficiently scale up a larger cascade with more models.

Key Findings

- **Cost-Efficiency**: Significant cost savings (up to 90%) with an accuracy comparable to LLMs alone.
- Adaptability: Smartly adapts across tasks of different difficulties and scaled-up cascade setups.
- **Robustness**: Utilizing the advantages of online learning, quickly adapts to unseen inputs, and performs robustly against distribution shifts in the data streams.

Future Work

Compound AI System (e.g., Foundation Model Agent with tool use)

Future Work

Cost-efficient Inference with Foundation Model Programs

By exploiting **task structure** and tailoring submodules to each **input's complexity**, *Foundation Model Programming* can trace an optimal tradeoff curve on the Pareto frontier of resource usage v.s. performance.

Thank you!

Q & A

Paper

