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TL;DR

Reduces LLM inference costs by up to 90% while maintaining high
accuracy and reliability in stream processing, by intersecting
imitation learning & online learning.
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Motivation

LLMs are widely used in commercial products for processing data streams.
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Content Filtering

e.g. moderating user-
generated content, email
spam filtering, flagging
hate speech
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Decision Making

e.g. financial investment
analysis, healthcare
diagnosis support, HR and
recruitment
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Recommendation
System

e.g., e-commerce product
recommendation,
streaming platforms,
travel and hospitality

A>]
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Content Creation

e.g., marketing
copywriting, video script
writing, personalized
email, story creation

Cost management and latency control are critical.
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Motivation

LLMs are advancing with varied cost-performance profiles.
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Motivation

Complexity distribution of input queries.
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Motivation

It was so touching and
beautiful. I strongly
recommend seeing for all.

©

This film is interesting
as an experiment but
tells no cogent story.

@

This is the movie for
those who believe cinema
is the seventh art, not an
entertainment business.

@ ncoming Queries of
@Q Varying Complexities

Motivation

One can save resources by using low-capacity
models for simpler tasks and reserving larger
models for more complex ones.
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Model Cascade
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output
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Cost(m,) < Cost(m,) < Cost(m;) < ... < Cost(LLM)

Motivation
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Exisiting Works

* Model Cascading

Premise: A Dog standing with one foot up
Hypothesis: The dog is standing on one leg

Input  cascading System

Models
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Motivation
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Exisiting Works - Limitations

Limitation 1: Reliance on human annotations

Input
Stream

Limitation 2: Fixed deferral thresholds output

output output

1. How to make full use of the LLM outputs?
2. How to make accurate deferral decisions?

Motivation
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Proposed Method: Online Cascade Learning

Intersecting Imitation Learning and Online Learning: Smaller models (m,,...,my) in the
cascade learn from LLM expert’s behaviors (red arrows) and calibrate the deferral functions
(fi,---,» fn—1) in real-time (green arrows).

Online Cascade Learning
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Online Cascade Learning

Assume we have a cascade consisting of a Logistic Regression, a BERT-base, and an LLM:

Initialized
randomly
/’ " 7
N
SO 1IN I T )
S pe]
Input
Stream H[FL H[F]J LLM
confident? confident? l
l l output
output output

Method
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Online Cascade Learning - Warm-up Stage

At startup, the policy keeps its “gates” open, allowing all initial inputs to flow through the cascade

I wouldn't rent
this one even on S

dollar rental “_g

night.
<
User Query Hﬂ]]: [0.52, 0.48]
#1
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output

Method
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Iy, [0.68, 0.32]
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0.4

output

defer

:

&

LLM

output
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Online Cascade Learning - Warm-up Stage

All initial queries are processed by the most expensive model (an LLM) to collect annotations:

I wouldn't rent
this one even on .

dollar rental "%7

night.
.
User Query I, [0.52, 0.48]
#1
confident? 0.2

output

Method
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output
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!

output: 0 (neg)
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Online Cascade Learning - Model Updates

The smaller models’ parameters are updated on the collected annotations.
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Online Learning: Model Updates
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Online Cascade Learning - Confidence Calibration

as well as the deferral functions:

I wouldn't rent

4.___________________

this one even on S
dollar rental “_g
night.
«
User Query Hﬂ]]: [0.52, 0.48]

#1

confident?

Method

A 4 i i
BERT | ! S i
-base ! 3 i
v e
|y, [0.68, 0.32] LLM
confident? 0.4 ! i
4 output: 0 ——

output

Online Learning: Confidence Calibration
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Online Cascade Learning - Stabilized Stage

As the system stabilizes, simple queries can be effectively handled by the smallest model (LR)

It was so touching =

. o
and beautiful. T LR 3 BERT S
strongly recommend ) -base 3

. S
seeing for all.
N
User Query lﬂ]]]: [0.16, 0.84] lﬂ]]]: LLM
#X | |
confident? 083® confident?
output
output: 1 (pos) output

Method



The University of Texas at Austin
&/ Department of Computer Science

College of Natural Sciences

Online Cascade Learning - Stabilized Stage

Harder queries are smartly deferred to the more complex model (BERT-base)

This film is v
interesting as an .
experiment but LR % BbERT %
tells no cogent S “hase <
. story.
User Query |y, [0.57, 0.43] {fh, [0.71, 0.29]
#Y L | 2N
confident? l 03& confident? 0.7®
output output: 0 (neg)

Method
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Online Cascade Learning - Stabilized Stage

The most difficult queries are deferred to the LLM to collect annotations for online learning

This is the movie l
for those who v
believe cinema is S BERT o
the seventh art, not “_g -base § @
an entertainment
N\, business.
User Query |y, [0.52, 0.48] |y, [0.41, 0.59] LLM
#Z L |
confident? 02 & confident?
output: 1 (vos)
output output

Method
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Online Cascade Learning - Model Updates

The smaller models’ parameters are updated on the collected annotations.

Online Learning: Model Updates

L . J
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Online Cascade Learning - Confidence Calibration

as well as the deferral functions:

This is the movie
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Problem Formulation - an Episodic MDP

We consider a streaming processing task where input queries are a fixed infinite stream X = (x4, ..., x¢, ... ). Each
query x; is associated with a ground truth y, from label set Y. Our goal is to predict the label for each x; using

an N-level model cascade cost-effectively.

Now we formulate this as an episodic MDP:

- States (S): Includes states s;; = (x;, i) where x; is the user query at time t and i indicates the current
cascade level, and a terminal state exit.

Let’s say, we have 3 models in a cascade for binary classification:

* States: St,l' St,Zl St,3l exit

O

defer

BERT t,2
-base

defer

P

Input
Stream l'ﬂ]]]: l‘ﬂﬂ]: LLM
confident? ] confident? ] l
output
output . output . '
exit exit exit

Formal Formulation
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Problem Formulation - an Episodic MDP

We consider a streaming processing task where input queries are a fixed infinite stream X = (x4, ..., x¢, ... ). Each
query x; is associated with a ground truth y, from label set Y. Our goal is to predict the label for each x; using

an N-level model cascade cost-effectively.

Now we formulate this as an episodic MDP:

» Actions (A4): Consists of label set Y, representing the potential predictions if the cascade choose to output at
the current state, and a special action de fer that activates the next level of the cascade.

Let’s say, we have 3 models in a cascade for binary classification:
 Actions:Y ={0,1}, defer

o

A )

Input
Stream

il LLM

confident? ] l
output

output output

confident?

Formal Formulation
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Problem Formulation - an Episodic MDP

We consider a streaming processing task where input queries are a fixed infinite stream X = (x4, ..., x¢, ... ). Each
query x; is associated with a ground truth y, from label set Y. Our goal is to predict the label for each x; using

an N-level model cascade cost-effectively.

Now we formulate this as an episodic MDP:
+ Transitions (T'): A determinisitic transition function, consisting of transitions of the form:

. T(sm-, a) =exitforaeyY
° T(st,i, defer) = St,i+1

Let’s say, we have 3 models in a cascade for binary classification,
and we are now at s; ;:

defer

A )

 Transitions:

Input

o T(st,l, a) = eXlt |f ae {0,1} Stream LLM

\—<>— !
. T(St,p defe ]f) — St,Z confident? confident? output

output output

exit

Formal Formulation
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Problem Formulation - an Episodic MDP

We consider a streaming processing task where input queries are a fixed infinite stream X = (x4, ..., x¢, ... ). Each
query x; is associated with a ground truth y, from label set Y. Our goal is to predict the label for each x; using
an N-level model cascade cost-effectively.

Now we formulate this as an episodic MDP:

» Cost Function (C): Balances predictive loss (£) for prediction actions and computational overheads of next
model (c;, 1) for deferral actions. Factor u adjusts the trade-off between computational cost and accuracy.

L(aly) ifa€eY
C(St,ia (1,) = . ’
UCit1 if a =defer.
Let’s say, we have 3 models in a cascade for binary classification,
and we are now at s ;: :ﬁ 3 @
« Costats,: Input
. Stream LLM
« C(s¢q,a) = L(alyy) ifa € {0,1} \—% |
confident? confident?
. output
 C(s¢q,a) = pcy if a = defer, where c, represents the ot output
exi

inference costs of BERT-base

Formal Formulation
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Method - Policies and Learning Objective

..,mN)

Policy Representation: We represent policies in a factorized way using a set of classification models (m4,
that constitute the different levels of the cascade, and deferral functions (f, ..., fx_1) that decide deferral.

n(st'l-, defer) = f;(m;(xy))

Probability of deferring:
”(St,i'Y) = (1 - fi(mi(xt))) m;(x;)[y] fory €Y

Probability of output label y:

Objective function: Minimize the combined cost of computational costs and prediction loss.

T Cr(st,i) = m(se4,defer) - pciy1 |
T T) =2 [ P On(51,) ] (1= m(si,defer)) - > m(sei,y) - L(wlye).

TCY

t=1 \
probability of reaching state s

i—1

pati = H m(s¢,j,defer)
j=1

Formal Formulation
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Experiments

e Models:
o Logistic Regression
o BERT-base, ~110 M (and BERT-large, ~340M for N=4)
o GPT-3.5 Turbo / Llama 2-70b-chat

e Benchmarks:

o IMDB: a binary sentiment classification benchmark with 50,000 movie reviews
HateSpeech: class-imbalanced (1:7.95) hate speech detection with 10,703 samples
ISEAR: multi-class emotion detection benchmark with 7,666 samples in 7 categories
FEVER: a fact-checking dataset with 6,512 claims requiring complex reasoning and
information verification.

O O O

e Baselines: Single LLMs, Knowledge Distillation, Online Ensemble Learning

Experiments

29
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Experimental Results

30

IMDB HateSpeech (Accuracy | Recall) ISEAR FEVER

N=1300 N=3800 WN=5200 | N=600 N=2700 N=4900 ‘ N=1200 N=1500 N=2700 ’ N=700 N=2000 N=2800
GPT-3.5 Turbo 94.15 | 8334 | 8328 ‘ 70.34 | 79.98
Distilled LR 82.61 83.60 87.01 80.18 | 37.94 82.23|49.25 85.03|45.59 44.97 47.46 48.92 56.51 57.80 57.13
Distilled BERT-base 85.28 90.18 90.19 80.49 | 64.39 80.71|73.88 79.35|77.37 61.49 62.62 63.37 61.70 63.64 70.82
Online Ensemble Learning  _86.73 __ _88.80 _ 8995 _| 82617675 7748|7689 81.35(80.30 |_56.56 6042 __ 6L78 | _6L69 _69.78_ _76.67
Online Cascade Learning l87.95 92.48 93.01 82.66 | 82.36 85.35|77.20 83.26|81.03 60.78 65.34 69.75 61.95 71.86 78.49 I
Llama 2 70B Chat 93.33 ‘ 7781 | 82.19 | 68.23 | 77.15
Distilled LR 82.17 85.80 86.88 67.94| 66.56 79.71|61.73 81.46|49.91 46.78 47.56 51.76 57.46 61.24 58.42
Distilled BERT-base 85.39 85.59 85.44 75.84 | 78.87 79.18|75.54 80.27|72.21 62.18 61.84 65.12 65.88 65.66 67.54
Online Ensemble Learning ~ _87.14 _ 88.66 _ 8961 _ 75.99]60.36_ 70.79|79.16 76.82 |81.84 |__54.74 __57.35_ __ 6019 | 6348 _ 7127 __76.46_
Online Cascade Learning 87.58 92.14 92.63 78.30 | 63.06 78.32|76.54 78.32]82.03 59.24 63.34 67.25 63.81 72.47 77.73

Table: Comparison of accuracy (and recall for HateSpeech dataset) among different methods under various cost budgets (i.e., the maximum
allowable LLM calls, denoted as N)

1. Overall, Online Cascade Learning can achieve better cost-performance trade-off.

Experiments
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Experimental Results

Llama 2 70B Chat

Distilled LR

Distilled BERT-base
Online Ensemble Learning
Online Cascade Learning

FEVER
| N=700 N=2000 N=2800
| 79.98
56.51  57.80 57.13
6170  63.64  70.82
61.69  69.78 76.67
6195  71.86  78.49
| 17715 ,
5746  61.24 58.42
6588  65.66 67.54
6348 7127  _76.46_
6381 7247 | 7173 |

Table: Comparison of accuracy (and recall for HateSpeech dataset) among different methods under various cost budgets.

2. Model cascade can even outperform LLM by taking advantage of fine-tuned models.

Experiments
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Experimental Results

GPT-3.5 Turbo

Distilled LR

Distilled BERT-base
Online Ensemble Learning
Online Cascade Learning

Llama 2 70B Chat

Distilled LR

Distilled BERT-base
Online Ensemble Learning
Online Cascade Learning

ISEAR
N=1200 N'=1500 AN'=2700 |
7034 |
Vaa97 4746 4892 |
I 61.49 62.62 63.37 |
| 5656 6042 6178
, 6078 6534 6975
I 68.23
| 4678 4756 5176
| 6218 6184 6512
5474 5735  60.19
| 5004 6334 6725

Table: Comparison of accuracy (and recall for HateSpeech dataset) among different methods under various cost budgets.

3. As cost buget increases, distilled models may be bounded by their capacity, whereas
model cascade can always defer to LLMs for complex queries.

Experiments

32



IMDB ISEAR
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Figure 5: Inference results on IMDB when N = 3671. Figure 7: Inference results on ISEAR when N = 2517.
Online cascade learning system performs similarly to GPT- Online cascade learning system performs very close to GPT-
3.5 Turbo while saving ~70% of the inference costs. 3.5 Turbo while saving ~30% of the inference costs.
HATESPEECH TEVER
€ 1.0 1.0 5, 1.0 1.0
° 0
E 0.5 0.5 g 9:8 o8
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3 g K o
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S Lo g 0.4 &
§. 0.5 ~90% 2] u 0
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Figure 6: Inference results on HateSpeech when N = 507. Figure 8: Inference results on FEVER when N = 2635.
Online cascade learning system performs similarly to GPT- Online cascac!e lear[‘nng system perfqrms similarly to GPT-
3.5 Turbo while saving ~90% of the inference costs. 3.5 Turbo while saving ~20% of the inference costs. 33
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Robustness againt Input Distribution Shift

a. Distribution Shift in Input Length.
« IMDB benchmark rearranged in length ascending order, simulating a distribution shift over the
input complexity.

b. Distribution Shift in Input Category.
« IMDB benchmark rearranged by filtering all reviews regarding “Comedy” movies, then feeding
them as the last part of the input stream, simulating a distribution shift over the input semantics.

1.0 1.00 1.0 1.00
0.9 0.9
0.8 0.8
0.7 0.7
0.80 0.80
©+ OCL, with Distribution Shift (Length) | [ OCL, with Distribution Shift (Length) ©++ OCL, with Distribution Shift (Category) «+++ OCL, with Distribution Shift (Category)
~—— OCL, without Distribution Shift (Length) ~—— OCL, without Distribution Shift (Length) ~—— OCL, without Distribution Shift (Category) ~—— OCL, without Distribution Shift (Category)
0.6 1 OEL, with Distribution Shift (Length) 0.75 OEL, with Distribution Shift (Length) 0.6 OEL, with Distribution Shift (Category) 0.75 OEL, with Distribution Shift (Category)
~—— OEL, without Distribution Shift (Length) ~—— OEL, without Distribution Shift (Length) ~—— OEL, without Distribution Shift (Category) ~—— OEL, without Distribution Shift (Category)
=== GPT 3.5 Turbo === LLAMA 2 === GPT 3.5 Turbo === LLAMA 2
0.5 ™ T T 0.70 0.5 ™ 0.70 T ™
1000 2000 3000 4000 5000 6000 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000
Cost Budget (number of LLM calls) Cost Budget (number of LLM calls) Cost Budget (number of LLM calls) Cost Budget (number of LLM calls)

85

Our method can quickly adapt to unseen inputs, perform robustly against distribution shifts in the data streams.
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Adaptability to Larger Cascade (N = 4)

o IMDB HATESPEECH ISEAR FEVER
508 r':—,\  — — 0.70 -| o8
v -
09 //i: g 07 0.68 0.78
g Y 0.66 076
= 2 0.6 ’
3 0.8 0.64 0.74
v
E 0.62 072
[ 0.8 0.60 / o070
(] H 0.68
6 o6 —— Online Cascade Learning 8o 0.58 /
- ---- GPT 3.5 Turbo & 0.56 o8
—— Online Ensemble Learning 0.6 0.64 /
0.54
o5 1000 2000 3000 4000 5000 6000 7000 1000 2000 3000 2000 5000 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000
Cost Budget (number of LLM calls) Cost Budget (number of LLM calls) Cost Budget (number of LLM calls) Cost Budget (number of LLM calls)
—mm e e mm mm mm o mm Em Em mm mm e = ==
Loo IMDB HATESPEECH | ISEAR FEVER |
) 0.775 4 e
3’ 0.80
0.95 2 L/ 0.65 0.750 I
Hn 505 _— — o — — —— -
© 9 V/\\\// 0.725
= 0.90
3 I~ — — Loz 0.60
o 0.700
< 0.85
= S — 0.675
© 0.55
o 0-80 — 0.80 }\// 0.650
8 —— Online Cascade Learning s
0.75 ---- LLAMA 2 g o 080 / e
—— Online Ensemble Learning 0.70 / 0.600
7% 000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000
Cost Budget (number of LLM calls) Cost Budget (number of LLM calls) Cost Budget (number of LLM calls) Cost Budget (number of LLM calls)

36

Our method can flexibly accommodate and efficiently scale up a larger cascade with more models.
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Key Findings

. Cost-Efficiency: Significant cost savings (up to 90%) with an accuracy
comparable to LLMs alone.

. Adaptability: Smartly adapts across tasks of different difficulties and scaled-up
cascade setups.

. Robustness: Utilizing the advantages of online learning, quickly adapts to
unseen inputs, and performs robustly against distribution shifts in the data
streams.

Experiments

&7/
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Future Work
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Future Work

Cost-efficient Inference with Foundation Model Programs
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By exploiting task structure and tailoring submodules to each input's complexity, Foundation Model
Programming can trace an optimal tradeoff curve on the Pareto frontier of resource usage v.s. performance.
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